Download Arithmetic, Geometry and Coding Theory (AGCT 2003) by Yves Aubry, Gilles Lachaud PDF

By Yves Aubry, Gilles Lachaud

Résumé :
Arithmétique, géométrie et théorie des codes (AGCT 2003)
En mai 2003 se sont tenus au Centre foreign de Rencontres Mathématiques à Marseille (France), deux événements centrés sur l'Arithmétique, los angeles Géométrie et leurs purposes à l. a. théorie des Codes ainsi qu'à l. a. Cryptographie : une école Européenne ``Géométrie Algébrique et Théorie de l'Information'' ainsi que los angeles 9ème édition du colloque overseas ``Arithmétique, Géométrie et Théorie des Codes''. Certains des cours et des conférences font l'objet d'un article publié dans ce quantity. Les thèmes abordés furent à l. a. fois théoriques pour certains et tournés vers des functions pour d'autres : variétés abéliennes, corps de fonctions et courbes sur les corps finis, groupes de Galois de pro-p-extensions, fonctions zêta de Dedekind de corps de nombres, semi-groupes numériques, nombres de Waring, complexité bilinéaire de los angeles multiplication dans les corps finis et problèmes de nombre de classes.

Mots clefs : Fonctions zêta, variétés abéliennes, corps de fonctions, courbes sur les corps finis, excursions de corps de fonctions, corps finis, graphes, semi-groupes numériques, polynômes sur les corps finis, cryptographie, courbes hyperelliptiques, représentations p-adiques, excursions de corps de classe, groupe de Galois, issues rationels, fractions keeps, régulateurs, nombre de periods d'idéaux, complexité bilinéaire, jacobienne hyperelliptiques

In might 2003, occasions were held within the ``Centre foreign de Rencontres Mathématiques'' in Marseille (France), dedicated to mathematics, Geometry and their purposes in Coding concept and Cryptography: an ecu institution ``Algebraic Geometry and knowledge Theory'' and the 9-th foreign convention ``Arithmetic, Geometry and Coding Theory''. a number of the classes and the meetings are released during this quantity. the themes have been theoretical for a few ones and became in the direction of functions for others: abelian forms, functionality fields and curves over finite fields, Galois staff of pro-p-extensions, Dedekind zeta features of quantity fields, numerical semigroups, Waring numbers, bilinear complexity of the multiplication in finite fields and sophistication quantity problems.

Key phrases: Zeta services, abelian types, capabilities fields, curves over finite fields, towers of functionality fields, finite fields, graphs, numerical semigroups, polynomials over finite fields, cryptography, hyperelliptic curves, p-adic representations, type box towers, Galois teams, rational issues, persevered fractions, regulators, perfect category quantity, bilinear complexity, hyperelliptic jacobians

Class. math. : 14H05, 14G05, 11G20, 20M99, 94B27, 11T06, 11T71, 11R37, 14G10, 14G15, 11R58, 11A55, 11R42, 11Yxx, 12E20, 14H40, 14K05

Table of Contents

* P. Beelen, A. Garcia, and H. Stichtenoth -- On towers of functionality fields over finite fields
* M. Bras-Amorós -- Addition habit of a numerical semigroup
* O. Moreno and F. N. Castro -- at the calculation and estimation of Waring quantity for finite fields
* G. Frey and T. Lange -- Mathematical history of Public Key Cryptography
* A. Garcia -- On curves over finite fields
* F. Hajir -- Tame pro-p Galois teams: A survey of contemporary work
* E. W. Howe, okay. E. Lauter, and J. most sensible -- unnecessary curves of genus 3 and four
* D. Le Brigand -- actual quadratic extensions of the rational functionality box in attribute two
* S. R. Louboutin -- particular higher bounds for the residues at s=1 of the Dedekind zeta services of a few completely actual quantity fields
* S. Ballet and R. Rolland -- at the bilindar complexity of the multiplication in finite fields
* Yu. G. Zarhin -- Homomorphisms of abelian types

Show description

Read or Download Arithmetic, Geometry and Coding Theory (AGCT 2003) PDF

Best number theory books

Meine Zahlen, meine Freunde: Glanzlichter der Zahlentheorie

Paulo Ribenboim behandelt Zahlen in dieser außergewöhnlichen Sammlung von Übersichtsartikeln wie seine persönlichen Freunde. In leichter und allgemein zugänglicher Sprache berichtet er über Primzahlen, Fibonacci-Zahlen (und das Nordpolarmeer! ), die klassischen Arbeiten von Gauss über binäre quadratische Formen, Eulers berühmtes primzahlerzeugendes Polynom, irrationale und transzendente Zahlen.

Zahlentheorie: Algebraische Zahlen und Funktionen

Prof. Helmut Koch ist Mathematiker an der Humboldt Universität Berlin.

Introduction to Classical Mathematics I: From the Quadratic Reciprocity Law to the Uniformization Theorem

` instructed for all libraries, this unmarried quantity might fill many gaps in smaller collections. 'Science & Technology`The e-book is well-written, the presentation of the fabric is obvious. . .. This very precious, first-class booklet is usually recommended to researchers, scholars and historians of arithmetic drawn to the classical improvement of arithmetic.

Fermat's Last Theorem: The Proof

This is often the second one quantity of the publication at the evidence of Fermat's final Theorem by way of Wiles and Taylor (the first quantity is released within the related sequence; see MMONO/243). right here the element of the evidence introduced within the first quantity is absolutely uncovered. The e-book additionally contains easy fabrics and buildings in quantity thought and mathematics geometry which are utilized in the facts.

Extra info for Arithmetic, Geometry and Coding Theory (AGCT 2003)

Sample text

Mattson used the Delsarte’s bound, and the final paper by Helleseth invokes the Weil-Carlitz-Uchiyama bound. 11 in [10]. ´ E ´ MATHEMATIQUE ´ SOCIET DE FRANCE 2005 O. N. 3. — Let f = 2t + 1 and α be a primitive root of F2f . The code C with zeroes α, αd , αd , where d = 2t−1 + 1, and d = 2t + 1 has covering radius 5. Let d1 , d2 be distinct natural numbers. 1. 4. — Let α be a primitive root of F2f and let C be the code of length n = 2f − 1 with zeros αd1 , αd2 over F2f . We assume that the minimum distance of C is 5.

T11r + t22r + · · · + tnNr r ≡ 0 mod q − 1, d111 t111 + d121 t121 + · · · + d1Nr r t1Nr r ≡ 0 mod q − 1, d211 t211 + d221 t221 + · · · + d2Nr r t2Nr r ≡ 0 mod q − 1, .. dn11 tn11 + dn21 tn21 + · · · + dnNr r tnNr r ≡ 0 mod q − 1. Now we are ready to state the main theorem of [15]. 1. — Let G be the following class of polynomials G = {a11 X d11 + · · · + a1N1 X d1N1 , · · · , ar1 X dr1 + · · · , arNr X drNr | aij ∈ Fq }. With L as above, there are polynomials F1 , . . , Fr in G, such that |N | is divisible by pL−f r but not divisible by pL+1−f r .

Vol. 2643, Springer, Berlin, 2003, p. 204–215. ´ E ´ MATHEMATIQUE ´ SOCIET DE FRANCE 2005 28 ´ M. D. Thesis, Universitat Polit`ecnica [3] M. Bras-Amoro de Catalunya, Barcelona, 2003. ´ s – Acute semigroups, the order bound on the minimum distance, and [4] M. Bras-Amoro the Feng-Rao improvements, IEEE Trans. Inform. Theory 50 (2004), no. 6, p. 1282– 1289. E. O’Sullivan – The correction capability of the Berlekamp[5] M. Bras-Amoro Massey-Sakata algorithm with majority voting, submitted, 2004. ´ n & C.

Download PDF sample

Rated 4.03 of 5 – based on 15 votes